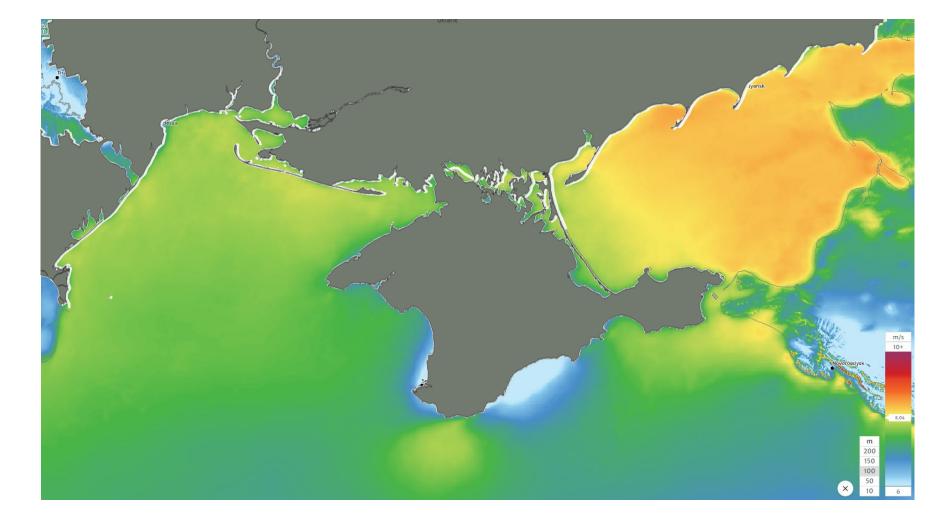


Pre-feasibility Study on Potential for Offshore Wind in UKRAINE Phase 1

DTU team Alexandre de Lemos Pereira, Aikaterini Mitsakou, Stefan S. Blagojevic, Poul Sørensen, Tyler Hansen, Anastasia Ioa Brian Ohrbeck Hansen & Jake Badger

Agenda

- Wind Climate Offshore Ukraine
- Geospatial Assessment
- Energy Yield Assessment three hypothetical wind farms
- Levelized Cost Of Energy Estimates
- Scale-up Strategies
- Summary


Analysis of Wind Potential

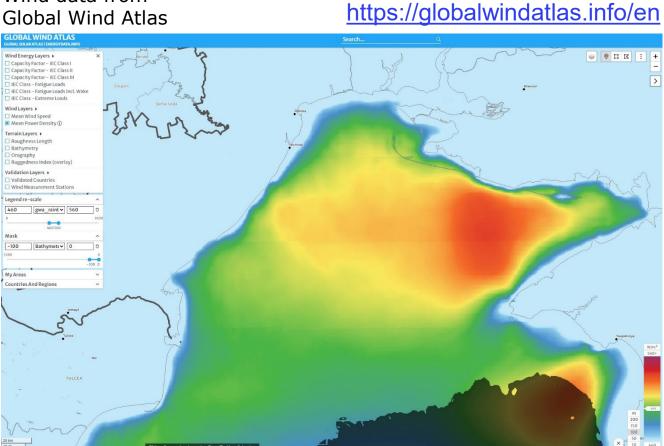
Mean Wind Speed at 100m

https://globalwindatlas.info/en

Wind data from Global Wind Atlas

DTU

https://globalwindatlas.info/en


Wind data from Global Wind Atlas

Mean Wind Power Density at 100 m

Wind data from **Global Wind Atlas**

Mean Wind speed from

Vortex maps in the Everoze report Offshore Romania and Ukraine - Preliminary site characterisatio

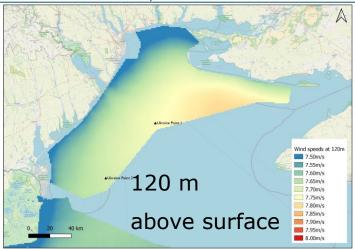
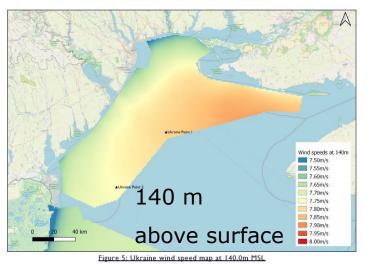
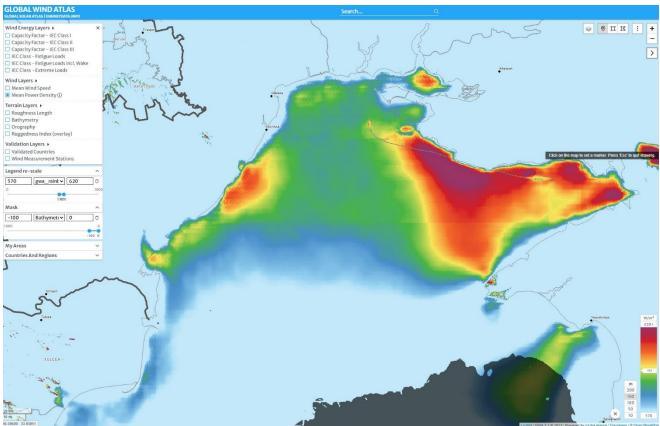



Figure 4: Ukraine wind speed map at 120.0m MSL



everoze

Mean Wind Power Density at 150 m

https://globalwindatlas.info/en

Wind data from Global Wind Atlas

Wind speed from

Vortex map in the Everoze report

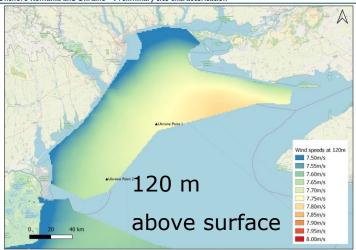
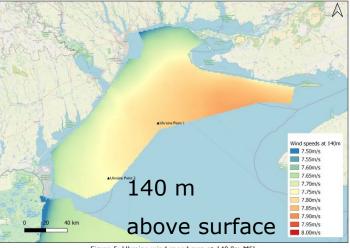
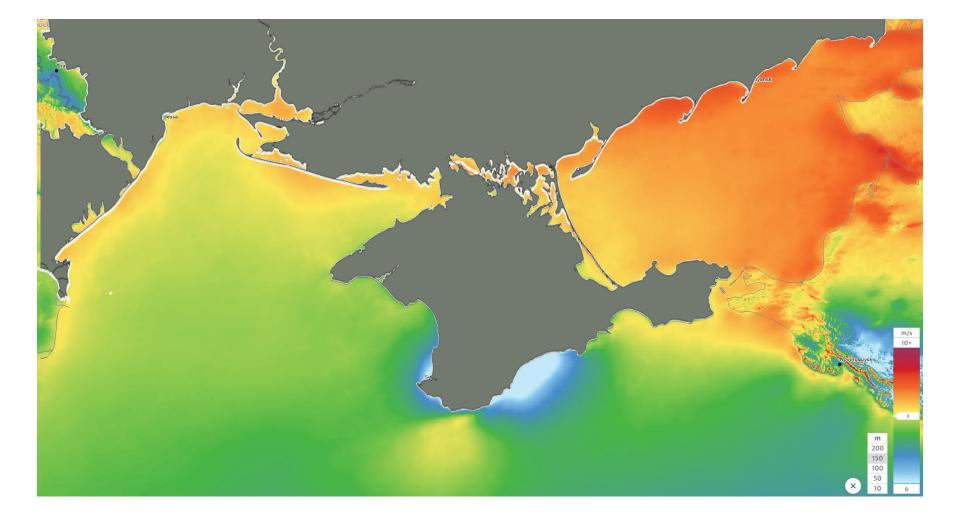


Figure 4: Ukraine wind speed map at 120.0m MSL

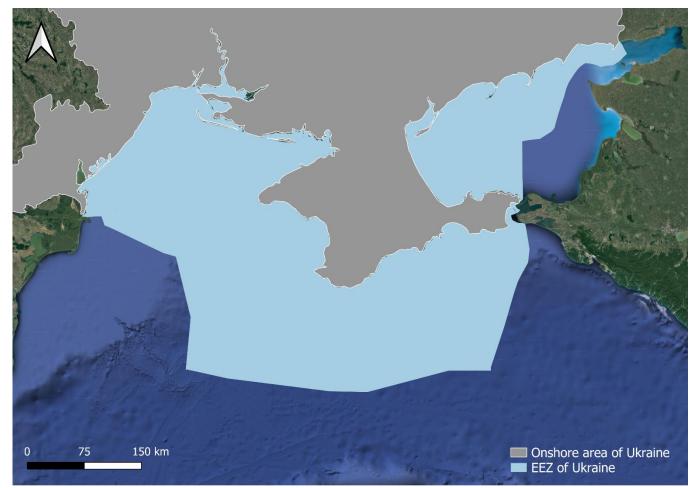



Figure 5: Ukraine wind speed map at 140.0m MSI

Mean Wind Speed at 150m

https://globalwindatlas.info/en

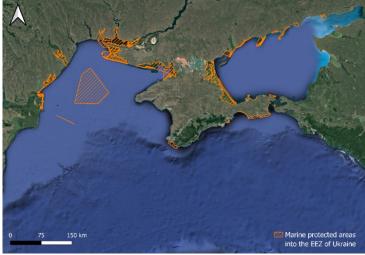
Wind data from Global Wind Atlas



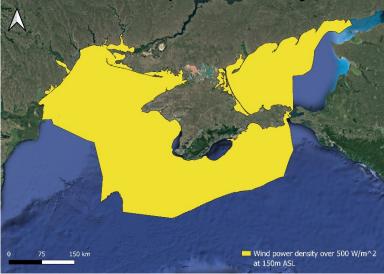
Geospatial Assessment

Exclusive Economic Zone (EEZ) and Onshore area of Ukraine

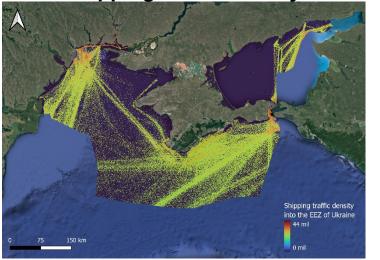
<u>Source</u>: World Bank Official Boundaries, <u>https://datacatalog.worldbank.org/search/dataset/0038272/World-Bank-Official-Boundaries</u> MarineRegions.org., <u>https://www.marineregions.org/</u>


10

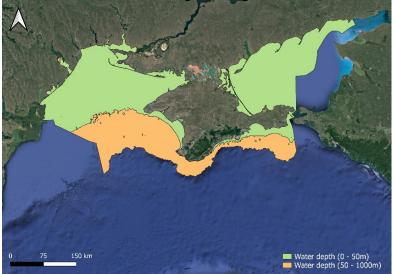
Title


Main constraints for geospatial assessment

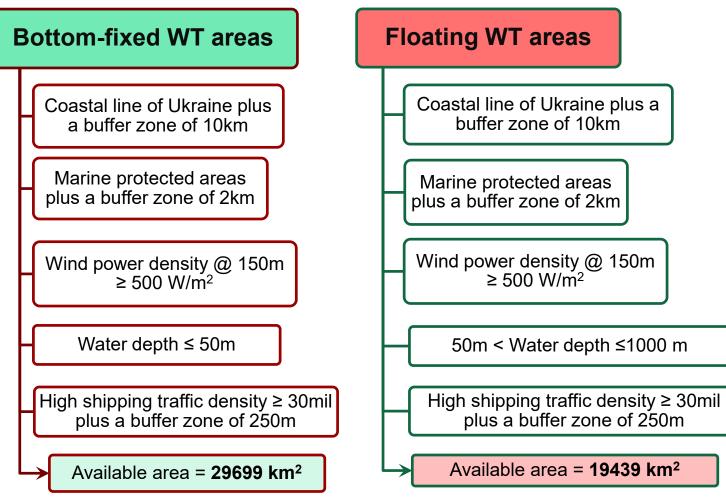
Marine protected areas


Source: Protected Planet, https://www.protectedplanet.net/en

Mean wind power density

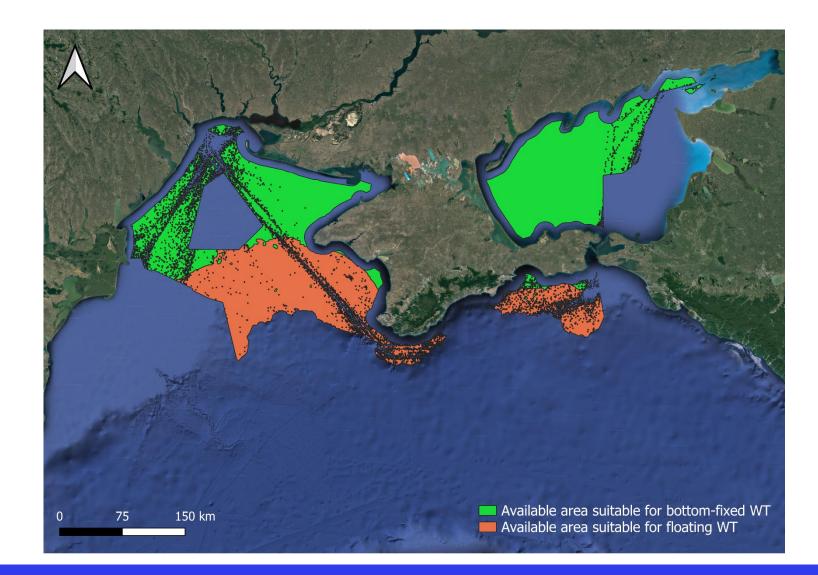

Source: Global Wind Atlas, https://globalwindatlas.info/en

Shipping traffic density


<u>Source</u>: The World Bank – Data Catalog (2015-2021), https://datacatalog.worldbank.org/search/dataset/0037580/Global-Shipping-Traffic-Density

Bathymetry

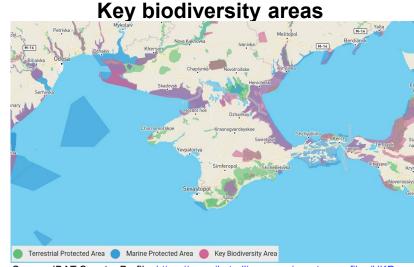
Source: Global Wind Atlas, https://globalwindatlas.info/en


Site selection – Criteria and restrictions for Bottom-fixed and Floating Wind Turbine areas

Date

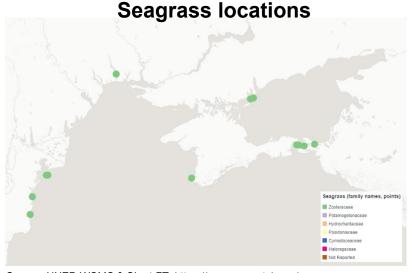

DTU

Date OTU Solution of the second state of th

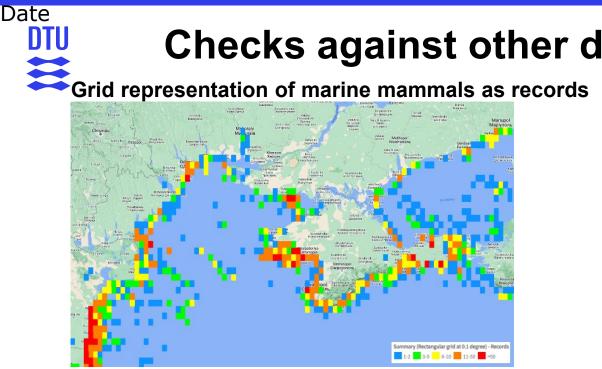


Date DTU


Checks against other datasets of sensitive areas


Source: UNEP-WCMC, https://data.unep-wcmc.org/datasets/44

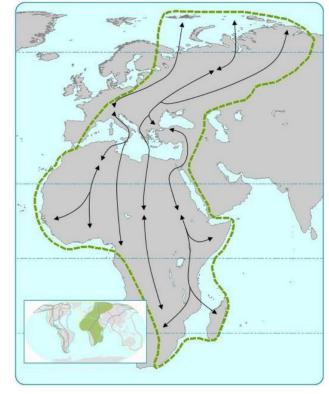
Source: IBAT Country Profile, https://www.ibat-alliance.org/country_profiles/UKR



Source: Ramsar Sites Information Service (RSIS), https://resourcewatch.org/

Source: UNEP-WCMC & Short FT, https://resourcewatch.org/

Checks against other datasets


Source: OBIS-SEAMAP, https://seamap.env.duke.edu/species/179913

Ecologically of Biologically Significant Marine Areas

Source: EBSA, https://www.cbd.int/ebsa/


Source: BirdLife, http://datazone.birdlife.org/userfiles/file/sowb/flyways/5 Mediterra

nean Black Sea Factsheet.pdf



Checks against other datasets

Ports and Airports

<u>Source</u>: National Geospatial Intelligence Agency, World Port Index, <u>https://resourcewatch.org/</u> OpenFlights, Airports, <u>https://resourcewatch.org/</u>

Source: Global Fishing Watch, https://resourcewatch.org/

Energy Yield Assessment

Wind Turbine

• Turbine specifications 8.25 MW capacity 140 m hub height 164 m rotor diameter

4.0 m/s cut-in wind speed 13.0 m/s rated wind speed

Wind turbine power and thrust curves

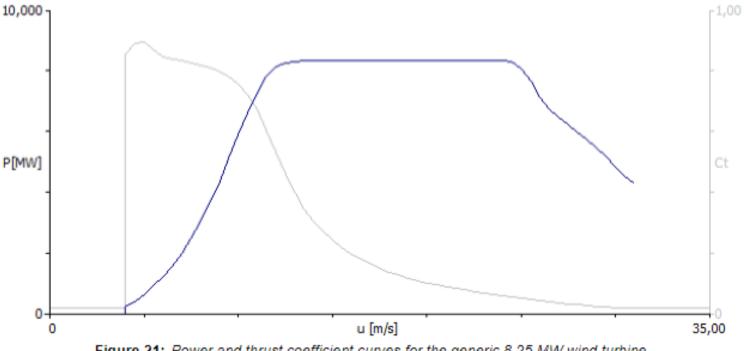


Figure 21: Power and thrust coefficient curves for the generic 8.25 MW wind turbine.

Site Locations

<u>3 sites</u>

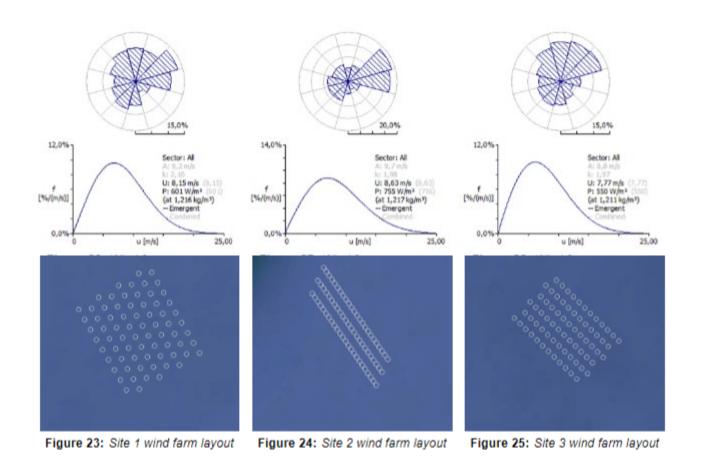
Site 1 Northern Black Sea Bottom-fixed

Site 2 Sea of Azov Bottom-fixed

Site 3 West of Crimea Floating Table 2: Main characteristics of the wind farm sites

Characteristic	Site 1	Site 2	Site 3
Average water depth	25 m	8 m	55 m
Distance to shore	15.3 km	13.7 km	45.9 m
Distance to port	124 km (Odessa)	112 km (Mariupol)	161 km (Odessa)
Mean wind power density	602 W/m ²	755 W/m ²	549 W/m ²

Figure 22: Site locations in Ukraine



Layouts

594 MW (~600 MW)

Wind direction distribution used to determine windfarm layouts:

- Turbine spacing
- Windfarm dimensions and shape
- Windfarm orientation

Table 3: Layout characteristics of the wind farm sites

Characteristic	Site 1	Site 2	Site 3
Location	Northern Black Sea	Sea of Azov	Black Sea - West of Crimea
Number of rows	8	3	6
Turbines per row	9	24	12
Turbine spacing	10D	4D	7D
Row spacing	10D	10D	10D

WAsP https://www.wasp.dk

Global Wind Atlas – Methodology https://globalwindatlas.info/en

Annual Energy Production

3 sites

Site 1 Northern Black Sea Lowest wake losses of the 3 sites

Site 2 Sea of Azov Highest production of the 3 sites

Site 3 West of Crimea Lowest production of the 3 sites

Parameter	Site 1	Site 2	Site 3
Mean wind speed	8.1 m/s	8.6 m/s	7.8 m/s
Wake loss	6.88%	8.69%	9.41%
Potential AEP	2106.6 GWh	2223.8 GWh	1892.1 GWh
Total losses	17.8%	20.1%	21.0%
Net AEP	1921.2 GWh	2028.1 GWh	1725.6 GWh
CF	36.9%	39.0%	33.2%

Levelized Cost of Energy (LCOE) Estimates

Levelized Cost of Energy (LCOE) Estimates

The LCOE is the minimum price at which energy produced must be sold for the duration of the project's operating phase to break even.

The unit is **EUR per MWh** of net production.

The LCOE can be calculated by dividing the net present value of lifetime costs by lifetime energy produced.

Assumptions and inputs:

Seven-year development and 25 operation:
Development phase (five years): 2024 – 2028
Financial investment decision (FID): 2029
Construction (two years): 2029-2030
Operation (25 years): 2031-2055

Levelized Cost of Energy (LCOE) Estimates Inputs and Assumptions

- Costs per MW offshore wind CAPEX and OPEX data from Bloomberg New Energy Finance (BNEF)
- Assume DEVEX is equal to 3% of total CAPEX
- Immature market premium: estimate from two scenarios. Scenario 1 = 5%. Scenario 2 = 20%
- Assume the same OPEX range for floating and bottom-fixed technologies
- Weighted Average Cost of Capital (WACC) (not adjusted for inflation) of 14% 16% for renewable energy from BNEF
- Assume a 5% rate of inflation: real WACC of 8.6% to 10.5% (bottom-fixed), real WACC of 10.6% 12.5% (floating)
- Baseline project assumption : a real WACC of 2.5% 3.2% (with an inflation rate of 2%)
- Assume corporate tax rate of 18% and a depreciation term of (minimum) five years
- Baseline assumption: 25% corporate tax rate and 15-year depreciation term (~7% of project cost per year)

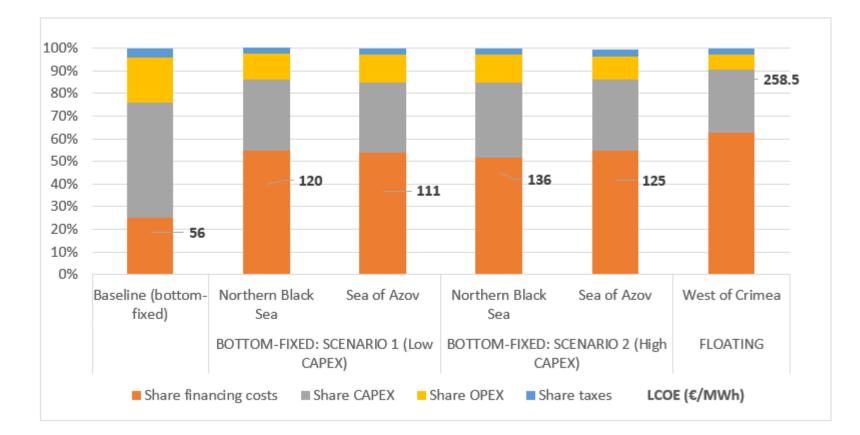
[5] M. Trifonova, M. Vladimirov, Wind Power Generation in Bulgaria, Center for the Study of Democracy, 2021.

^[1] J. Badger, B.O. Hansen, A. Mitsakou, S.S. Blagojevic, T. Hansen, N.-E. Clausen, Case Study-based Prefeasibility Assessment of Offshore

^[2] Wind Resources in Egypt, DTU Wind and Energy Systems, Roskilde, 2022. https://orbit.dtu.dk/en/publications/case-study-based-prefeasibility-assessment-of-offshore-wind-resou.

^[3] G. Trypolska, O. Riabchyn, Experience and Prospects of Financing Renewable Energy Projects in Ukraine, IJEEP. 12 (2022) 134–143.

^[4] T. Kurbatova, I. Sotnyk, O. Prokopenko, I. Bashynska, U. Pysmenna, Improving the Feed-in Tariff Policy for Renewable Energy Promotion in Ukraine's Households, Energies. 16 (2023) 6773.



Levelized Cost of Energy (LCOE) Estimates

Project	LCOE [€/MWh]	Share Financing costs	Share CAPEX	Share OPEX	Share Taxes
Baseline (bottom-fixed)	48 – 64	11 – 18	25 – 32	11 – 12	2-3
BOTTOM-FIXED: SCENA	RIO 1 (Low CAPEX)				
Site 1 Northern Black Sea	98 – 142	50 – 82	34 – 41	12 – 15	3 – 4
Site 2 Sea of Azov	91 – 131	46 – 75	30 – 37	12 – 15	3 – 4
BOTTOM-FIXED: SCENA	RIO 2 (High CAPEX)			
Site 1 Northern Black Sea	111 – 161	57 – 72	37 – 47	14 – 15	4 – 5
Site 2 Sea of Azov	102 – 148	52 - 86	35 – 43	12 – 15	3 – 4
FLOATING					
Site 3 West of Crimea	223 – 294	124 – 192	67 – 77	16 – 17	7 – 8

Mean real LCOE values and mean shares of costs for offshore wind projects

Levelized Cost of Energy (LCOE) Estimates assuming baseline project WACC

LCOE in EUR/MWh

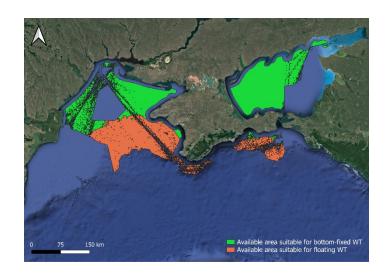
Project	Scenario 1 (Iow CAPEX)	Scenario 2 (high CAPEX)	
Site 1 Northern Black Sea	61 – 81	68 – 91	
Site 2 Sea of Azov	57 – 75	63 – 84	
Site 3 West of Crimea	115 – 141		

Scaling Up

Maximum Installation Capacity

Assumptions

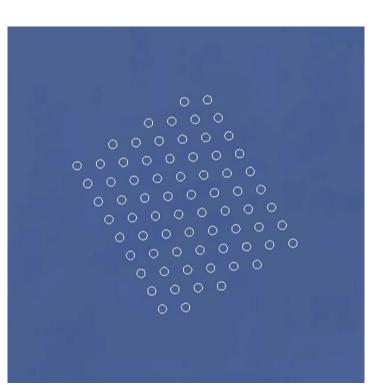
(calculated) Available area for <u>Bottom-fixed</u> wind turbines = $29,699 \text{ km}^2$ (estimated) Capacity Density , CD = 1 MW/km^2


Result

Assumptions

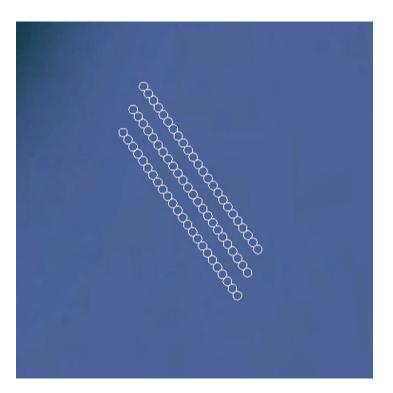
(calculated) Available are for <u>Floating</u> wind turbines = $19,439 \text{ km}^2$ (estimated) Capacity Density , CD = 1 MW/km^2

Result


➔Total Capacity ~ 20 GW

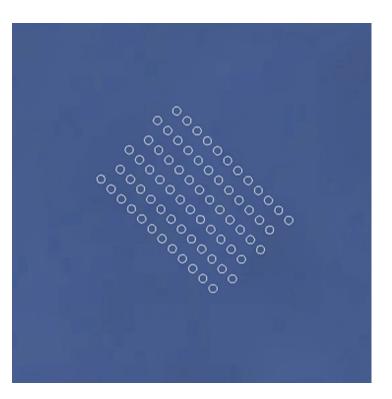
Hypothetical Wind Farm – Site 1

NET Capacity Factor = 36.9 %


Spacing : 10 D x 10 D Area : 230 km² Total Capacity: 594 MW Capacity Density = 2.6 MW/km² wake loss = 6.9 %

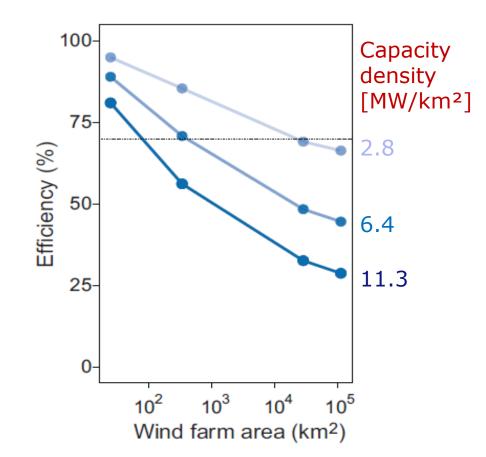
Hypothetical Wind Farm – Site 2

NET Capacity Factor = 39 %


Spacing : 4 D x 10 D Area : 82 km² Total Capacity: 594 MW Capacity Density = 7.2 MW/km² wake loss = 8.7 %

Hypothetical Wind Farm – Site 3

NET Capacity Factor = 33.2 %


Spacing : 7 D x 10 D Area : 160 km² Total Capacity: 594 MW Capacity Density = 3.7 MW/km² wake loss = 9.4 %

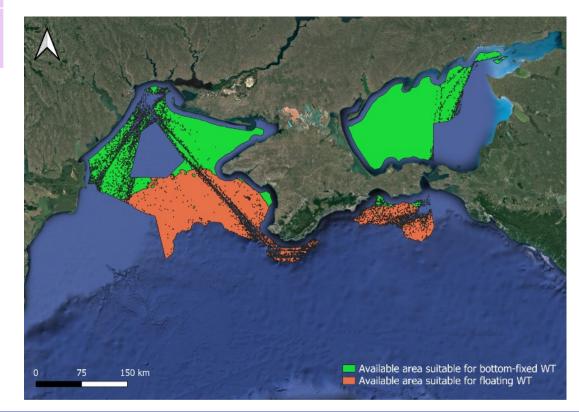
Wind farm size and wake effects

Capacity Factor Recap: **36.9%** Site 1 = 230 km², CD = 2.6 MW/km² \rightarrow wake loss = 6.9% Site 2 = 82 km², CD = 7.2 MW/km² \rightarrow wake loss = 8.7% 39.0% Site 3 = 160 km², CD = 3.7 MW/km² \rightarrow wake loss = 9.4% <mark>33.2%</mark> Considering an increase from 600MW to 3000MW (**3GW**) Similar to Bornholm (DK) Wind Farm Cluster NET Capacity Factor

ES 1 = 1150 km², CD = 2.6 MW/km² \rightarrow wake loss = 16% 33.5% ES 2 = 410 km², CD = 7.2 MW/km² \rightarrow wake loss = 23% 33.4% ES 3 = 800 km², CD = 3.7 MW/km² \rightarrow wake loss = 18% 30.3% Research findings (Volker et al, 2017):

Volker, P, Hahmann, AN, Badger, J & Ejsing Jørgensen, H 2017, 'Prospects for generating electricity by large onshore and offshore wind farms: Letter', *Environmental Research Letters*, vol. 12, no. 3, 034022

NFT



- Wind climate and wind resource assessed using freely available DTU's Global Wind Atlas
- Assessment of suitable areas based on freely available global datasets of environmentally sensitive areas, shipping activity, wind power density, and water depth.
 - Check against other data sources showed consistency with suitability assessment
 - Other data sources point to factors to be considered in more depth for specific site development
- 3 Hypothetical Windfarms investigated in terms of
 - Annual Energy Production
 - Levelized Cost of Energy

Conclusion 1

	Bottom-fixed wind turbines	Floating wind turbines
Available Areas for Offshore Wind Farms	~30,000 km ²	∼20,000 km²
Guiding Maximum Capacity	~30 GW	~20 GW

Conclusion 2

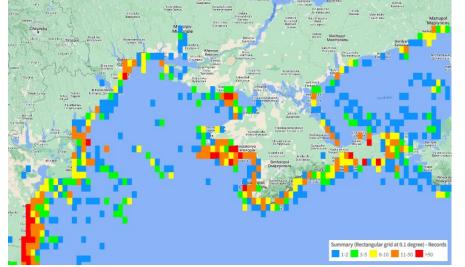
	Site 1 Northern Black Sea	Site 2 Sea of Azov
Capacity Factor 600 MW Wind Farm	36.9 %	39 %
Capacity Factor 3 GW Wind Farm	33.5 %	33.4 %
LCOE [EUR / MWh]	98 – 142	91 – 131

	Site 3 West of Crimea
Capacity Factor 600 MW Wind Farm	33.2 %
Capacity Factor 3 GW Wind Farm	30.3 %
LCOE [EUR / MWh]	223 – 294

Table 2: Main characteristics of the wind farm sites

Characteristic	Site 1	Site 2	Site 3
Average water depth	25 m	8 m	55 m
Distance to shore	15.3 km	13.7 km	45.9 m
Distance to port	124 km (Odessa)	112 km (Mariupol)	161 km (Odessa)
Mean wind power density	602 W/m ²	755 W/m ²	549 W/m ²

Figure 22: Site locations in Ukraine

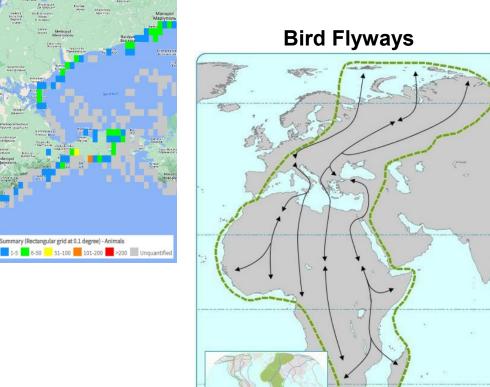


Extra Slides

Date DTU

Comparison against other datasets of sensitive areas

Grid representation of marine mammals as records and as animals



Ecologically of Biologically Significant Marine Areas

<u>Source</u>: EBSA, <u>https://www.cbd.int/ebsa/</u>

Source: BirdLife,

http://datazone.birdlife.org/userfiles/file/sowb/flyways/5_Mediterra nean_Black_Sea_Factsheet.pdf

